Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Degradation of dyestuff wastewater using visible light in the presence of a novel nano TiO2 catalyst doped with upconversion luminescence agent.

A new upconversion luminescence agent, 40CdF2 x 60BaF2 x 0.8Er2O3, was synthesized and its fluorescent spectra were determined. This upconversion luminescence agent can emit five upconversion fluorescent peaks shown in the fluorescent spectra whose wavelengths are all below 387 nm under the excitation of 488 nm visible light. This upconversion luminescence agent was mixed into nano rutile TiO2 powder by ultrasonic and boiling dispersion and the novel doped nano TiO2 photocatalyst utilizing visible light was firstly prepared. The doped TiO2 powder was charactered by XRD and TEM and its photocatalytic activity was tested through the photocatalytic degradation of methyl orange as a model compound under the visible light irradiation emitted by six three basic color lamps. In order to compare the photocatalytic activities, the same experiment was carried out for undoped TiO2 powder. The degradation ratio of methyl orange in the presence of doped nano TiO2 powder reached 32.5% under visible light irradiation at 20 h which was obviously higher than the corresponding 1.64% in the presence of undoped nano TiO2 powder, which indicate the upconversion luminescence agent prepared as dopant can effectively turn visible lights to ultraviolet lights that are absorbed by nano TiO2 particles to produce the electron-cavity pairs. All the results show that the nano rutile TiO2 powder doped with upconversion luminescence agent is a promising photocatalyst using sunlight for treating the industry dye wastewater in great force.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app