Changes in nutrient concentrations and ratios during mucilage events in the period 1999-2002

Danilo Degobbis, Robert Precali, Carla R Ferrari, Tamara Djakovac, Attilio Rinaldi, Ingrid Ivancić, Manuela Gismondi, Nenad Smodlaka
Science of the Total Environment 2005 December 15, 353 (1): 103-14
Nutrient and chlorophyll a concentrations and salinity were measured, approximately monthly, from June 1999 to July 2002 at 20 stations along three transects in the northern Adriatic Sea, north of the line Susak Island-Senigallia, with the aim of confirming or rejecting the hypothesis that changes in nutrient ratios may have an important role in the mucilage phenomenon. The data analyses were focused on the two major water types identified in the region: lower salinity (32-37) and oxygenated surface waters (type 1) in which the mucilage phenomenon primarily developed, and high salinity water originating from other parts of the Adriatic (type 4). Marked variability of dissolved inorganic nitrogen (DIN) in type 1 waters was roughly correlated with extreme fluctuations of the Po River flow rate during the investigated period. In contrast, the orthophosphate (PO4) concentration was primarily controlled by phytoplankton assimilation. The nutrient discharges and DIN/PO4 ratios (median 120) in the freshened surface layer were much higher and more variable in the period before the mucilage event in 2001 than in 2000 (median 75), and particularly in 2002 (median 30), although intensity and duration of the 2001 event were the lowest. However, in that period of 2000 and 2002 significant transversal transport of freshened waters occurred, despite the unusually low Po flow rates. In summer, in conditions of low freshwater discharge and the prevailing of semi-enclosed circulation in the region, more efficient DIN assimilation by phytoplankton occurred, probably due to a faster recycling of PO4. However, in 2002 this process appeared to have already started in March. Changes of the orthosilicate (SiO4)/DIN ratio were mainly dependent on DIN concentrations. In the more saline waters (type 4) the nutrient concentrations, particularly DIN, were much lower and no significant relationships were noticed among the studied parameters. Nutrient concentration and ratio changes do not trigger mucilage events, although very probably they have an essential role in combination with several other physical (pulsing freshwater discharge, marked stratification, minimal water exchange) and biological (e.g., increased plankton excretion, limited bacterial degradation) factors.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"