Nitrobacter and Nitrospira genera as representatives of nitrite-oxidizing bacteria: detection, quantification and growth along the lower Seine River (France)

Aurélie Cébron, Josette Garnier
Water Research 2005, 39 (20): 4979-92
Pollution from agriculture and urban effluents influences the ecology and biochemical functioning of the Seine River. Nitrification dominates nitrogen transformations downstream of the effluents of the Paris wastewater treatment plant (WWTP) at Achères, treating, by activated sludge the wastewater of 6.5 million inhabitant equivalents from Paris and its suburbs, without nitrification and denitrification treatment. It discharges effluents containing large amounts of nitrogen, ammonium mostly (approximately 30 mg L(-1) N-NH(4+) L(-1)), on average 45 mg L(-1) of suspended particulate matter, high quantities of total organic carbon (approximately 30 mg C L(-1)) largely biodegradable (40%), and high concentration in total phosphorus ( approximately 3 mg Tot P L(-1)), as well as microorganisms. Ammonium, brought into the river system, is slowly nitrified in the lower Seine River and especially in the freshwater estuary. The nitrifying activities can be observed by measuring inorganic nitrogen compound concentrations and potential activities. To understand the contributions of the WWTP effluents, the upstream agricultural runoff water and the Seine tributaries, it is useful to investigate the bacterial community. Whereas ammonia oxidation has been widely studied, the second step, i.e. nitrite oxidation, is less well understood. We have previously analysed the ammonium-oxidizing bacterial (AOB) community in the Seine (Cébron, A., Berthe, T., Garnier, J., 2003. Nitrification and nitrifying bacteria in the lower Seine River and estuary (France). Appl. Environ. Microbiol. 69, 7091-7100; Cébron, A., Coci, M., Garnier, J., Laanbroek, H.J., 2004. DGGE analysis of the ammonia oxidizing bacterial community structure in the lower Seine River: impact of the Paris wastewater effluents. Appl. Environ. Microbiol. 70, 6726-6737), and focus here on the composition of the nitrite-oxidizing bacterial (NOB) community. As no general molecular probe targeting all known NOBs is currently available, we chose to target and quantify (by competitive PCR) the two genera Nitrobacter and Nitrospira assumed to be the major players in nitrite oxidation in freshwater environments. Nitrobacter species were dominant in the upstream Seine River basin but Nitrospira was the dominant NOB downstream of the WWTP. These two genera were equally represented in WWTP effluents. In the Seine River estuary, especially in the salinity gradient, the Nitrobacter proportion increases and that of Nitrospira disappears, possibly due dilution by seawater.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"