COMPARATIVE STUDY
JOURNAL ARTICLE

Caspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome

Eric E Abrahamson, Milos D Ikonomovic, John R Ciallella, Caroline E Hope, William R Paljug, Barbara A Isanski, Dorothy G Flood, Robert S B Clark, Steven T DeKosky
Experimental Neurology 2006, 197 (2): 437-50
16300758
The detrimental effects of traumatic brain injury (TBI) on brain tissue integrity involve progressive axonal damage, necrotic cell loss, and both acute and delayed apoptotic neuronal death due to activation of caspases. Post-injury accumulation of amyloid precursor protein (APP) and its toxic metabolite amyloid-beta peptide (Abeta) has been implicated in apoptosis as well as in increasing the risk for developing Alzheimer's disease (AD) after TBI. Activated caspases proteolyze APP and are associated with increased Abeta production after neuronal injury. Conversely, Abeta and related APP/Abeta fragments stimulate caspase activation, creating a potential vicious cycle of secondary injury after TBI. Blockade of caspase activation after brain injury suppresses apoptosis and improves neurological outcome, but it is not known whether such intervention also prevents increases in Abeta levels in vivo. The present study examined the effect of caspase inhibition on post-injury levels of soluble Abeta, APP, activated caspase-3, and caspase-cleaved APP in the hippocampus of nontransgenic mice expressing human Abeta, subjected to controlled cortical injury (CCI). CCI produced brain tissue damage with cell loss and elevated levels of activated caspase-3, Abeta(1-42) and Abeta(1-40), APP, and caspase-cleaved APP fragments in hippocampal neurons and axons. Post-CCI intervention with intracerebroventricular injection of 100 nM Boc-Asp(OMe)-CH(2)F (BAF, a pan-caspase inhibitor) significantly reduced caspase-3 activation and improved histological outcome, suppressed increases in Abeta and caspase-cleaved APP, but showed no significant effect on overall APP levels in the hippocampus after CCI. These data demonstrate that after TBI, caspase inhibition can suppress elevations in Abeta. The extent to which Abeta suppression contributes to improved outcome following inhibition of caspases after TBI is unclear, but such intervention may be a valuable therapeutic strategy for preventing the long-term evolution of Abeta-mediated pathology in TBI patients who are at risk for developing AD later in life.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16300758
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"