Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Left-right lineage analysis of AV cushion tissue in normal and laterality defective Xenopus hearts.

The majority of complex congenital heart defects occur in individuals who are afflicted by laterality disease. We hypothesize that the prevalence of valvuloseptal defects in this population is due to defective left-right patterning of the embryonic atrioventricular (AV) canal cushions, which are the progenitor tissue for valve and septal structures in the mature heart. Using embryos of the frog Xenopus laevis, this hypothesis was tested by performing left-right lineage analysis of myocytes and cushion mesenchyme cells of the superior and inferior cushion regions of the AV canal. Lineage analyses were conducted in both wild-type and laterality mutant embryos experimentally induced by misexpression of ALK4, a type I TGF-beta receptor previously shown to modulate left-right axis determination in Xenopus. We find that abnormalities in overall amount and left-right cell lineage composition are present in a majority of ALK4-induced laterality mutant embryos and that much variation in the nature of these abnormalities exists in embryos that exhibit the same overall body situs. We propose that these two parameters of cushion tissue formation-amount and left-right lineage origin-are important for normal processes of valvuloseptal morphogenesis and that defective allocation of cells in the AV canal might be causatively linked to the high incidence of valvuloseptal defects associated with laterality disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app