Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Brain magnetic resonance spectroscopy in Tourette's disorder.

OBJECTIVE: Although abnormalities of neural circuits involving the cortex, striatum, and thalamus are hypothesized to underlie Tourette's disorder, the neuronal abnormalities within components of these circuits are unknown. The purpose of this study was to examine the cellular neurochemistry within these circuits in Tourette's disorder using proton magnetic resonance spectroscopy, a method that has not previously been used in neurobiological investigations of the disorder.

METHOD: Proton magnetic resonance spectroscopic imaging examinations were conducted in 25 males with Tourette's disorder (age 10.9 +/- 2.0 years) and 32 male comparison subjects (age 11.5 +/- 2.7 years). Spectra from frontal cortex, caudate nucleus, putamen, and thalamus were analyzed, and N-acetylaspartate, creatine, choline, myoinositol, and glutamate + glutamine were quantified and compared between the groups.

RESULTS: Patients with Tourette's disorder demonstrated a reduction in N-acetylaspartate and choline in the left putamen, along with reduced levels of creatine bilaterally in the putamen. In the frontal cortex, patients had significantly lower concentrations of N-acetylaspartate bilaterally, lower levels of creatine on the right side, and reduced myoinositol on the left side.

CONCLUSIONS: The results of this study suggest compromised neuronal integrity and deficits in density of neuronal and nonneuronal cells in components of the neural circuits implicated in Tourette's disorder.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app