COMPARATIVE STUDY
IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Changes in the properties of the modulatory cerebral giant cells contribute to aging in the feeding system of Lymnaea.

Neurobiology of Aging 2006 December
This study examined whether electrophysiological changes in the endogenous properties and connectivity of the modulatory serotonergic cerebral giant cells (CGCs) contributed to the age-related changes in feeding behavior of the pond snail, Lymnaea. With increasing age there was a decrease in spontaneous CGC firing rates and decreased excitability of the CGCs to both chemosensory stimulation (0.05M sucrose applied to the lips) and direct intracellular current injection. These changes could be accounted for by a decrease in the input resistance of the neuron and an increase in the amplitude and the duration of the after-hyperpolarization. Decreases were also seen in the % of CGC pairs that were electrically coupled causing asynchronous firing. Together these changes would tend to reduce the ability of the CGCs to gate and control the frequency of the feeding behavior. Part of the ability of the CGCs to gate and frequency control the feeding network is to provide a background level of excitation to the feeding motor neurons. Recordings from B1 and B4 motor neurons showed an age-related hyperpolarization of the resting membrane potential consistent with a deficit in CGC function. Increases were seen in the strength of the evoked CGC-->B1 connection, however, this increase failed to compensate for the deficits in CGC excitability. In summary, age-related changes in the properties of the CGCs were consistent with them contributing to the age-related changes in feeding behavior seen in Lymnaea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app