Citropin 1.1-treated central venous catheters improve the efficacy of hydrophobic antibiotics in the treatment of experimental staphylococcal catheter-related infection

Oscar Cirioni, Andrea Giacometti, Roberto Ghiselli, Wojciech Kamysz, Fiorenza Orlando, Federico Mocchegiani, Carmela Silvestri, Alberto Licci, Leonardo Chiodi, Jerzy Lukasiak, Vittorio Saba, Giorgio Scalise
Peptides 2006, 27 (6): 1210-6
An in vitro antibiotic susceptibility assay for Staphylococcus aureus biofilms developed on 96-well polystyrene tissue culture plates was performed to elucidate the activity of citropin 1.1, rifampin and minocycline. Efficacy studies were performed in a rat model of staphylococcal CVC infection. Silastic catheters were implanted into the superior cava. Twenty-four hours after implantation the catheters were filled with citropin 1.1 (10 microg/mL). Thirty minutes later the rats were challenged via the CVC with 1.0 x 10(6) CFU of S. aureus strain Smith diffuse. Administration of antibiotics into the CVC (the antibiotic lock technique) began 24 h later. The study included: one control group (no CVC infection), one contaminated group that did not receive any antibiotic prophylaxis, one contaminated group that received citropin 1.1-treated CVC, two contaminated groups that received citropin 1.1-treated CVC plus rifampin and minocycline at concentrations equal to MBCs for adherent cells and 1024 microg/mL in a volume of 0.1 mL that filled the CVC and two contaminated groups that received rifampin or minocycline at the same concentrations. All catheters were explanted 7 days after implantation. Main outcome measures were: minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), synergy studies, quantitative culture of the biofilm formed on the catheters and surrounding venous tissues, and quantitative peripheral blood cultures. MICs of conventional antibiotics against the bacteria in a biofilm were at least four-fold higher than against the freely growing planktonic cells. In contrast, when antibiotics were used on citropin 1.1 pre-treated cells they showed comparable activity against both biofilm and planktonic organisms. The in vivo studies show that when CVCs were pre-treated with citropin 1.1 or with a high dose of antibiotics, biofilm bacterial load was reduced from 10(7) to 10(3) CFU/mL and bacteremia reduced from 10(3) to 10(1) CFU/mL. When CVCs were treated both with citropin 1.1 and antibiotics, biofilm bacterial load was further reduced to 10(1) CFU/mL and bacteremia was not detected, suggesting 100% elimination of bacteremia and a log 6 reduction in biofilm load. Citropin 1.1 significantly reduces bacterial load and enhances the effect of hydrophobic antibiotics in the treatment of CVC-associated S. aureus infections.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"