COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Phoenix-ampho outperforms PG13 as retroviral packaging cells to transduce human T cells with tumor-specific receptors: implications for clinical immunogene therapy of cancer.

We have designed a transgene that encodes a scFv(G250) chimeric receptor, which is specific for carboxyanhydrase IX (G250-ligand, G250L), a molecule overexpressed by renal cell cancer (RCC). Retroviral transduction of this transgene into primary human T lymphocytes confers these cells with specific functional responses towards G250L-positive RCC cells. In preparation of a clinical phase (I/II) study in RCC patients, we set up a protocol for gene transduction and expansion of primary human T cells. For this purpose, we directly compared two packaging cell lines, that is, the GALV-pseudotyped MLV producing cell line PG13, and the MLV-A-producing cell line Phi-NX-Ampho (a.k.a. Phoenix-A). We generated and characterized stable scFv(G250)-positive clones of both PG13 and Phoenix cells and optimized the retrovirus production conditions. Transductions of primary human T cells yielded 30-60% scFv(G250)+ T cells using PG13-derived retrovirus versus up to 90% scFv(G250)+ T cells using Phoenix-derived retrovirus. The median number of transgene integrations per scFv(G250)+ T cell differed only 1.5-fold as determined by real-time PCR (mean number of integrations per T cell 2.6 and 3.7 for PG13 and Phoenix-based transductions, respectively). In addition, T cells transduced with Phoenix-derived retrovirus showed, on a per cell basis, 10-30% higher levels of scFv(G250)-mediated TNFalpha production and cytolysis of G250L+ RCC cells than T cells transduced with PG13-derived retrovirus. The improved functional transduction efficiency together with a limited increase in the number of integrations per recipient cell, made us select Phoenix clone 58 for our clinical immunogene therapy study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app