JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Functional analysis of mutations in the kinase domain of the TGF-beta receptor ALK1 reveals different mechanisms for induction of hereditary hemorrhagic telangiectasia.

Blood 2006 March 2
Genetic studies in mouse and zebrafish have established the importance of activin receptor-like kinase 1 (ALK1) in formation and remodeling of blood vessels. Single-allele mutations in the ALK1 gene have been linked to the human type 2 hereditary hemorrhagic telangiectasia (HHT2). However, how these ALK1 mutations contribute to this disorder remains unclear. To explore the mechanism underlying effect of the HHT-related ALK1 mutations on receptor activity, we generated 11 such mutants and investigated their signaling activities using reporter assay in mammalian cells and examined their effect on zebrafish embryogenesis. Here we show that some of the HHT2-related mutations generate a dominant-negative effect whereas the others give rise to a null phenotype via loss of protein expression or receptor activity. These data indicate that loss-of-function mutations in a single allele of the ALK1 locus are sufficient to contribute to defects in maintaining endothelial integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app