JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Advanced glycation end products and diabetic nephropathy.

Chronic hyperglycemia and oxidative stress in diabetes results in the formation and accumulation advanced glycation end products (AGEs). AGEs have a wide range of chemical, cellular, and tissue effects that contribute to the development of microvascular complications. In particular, AGEs appear to have a key role in the diabetic nephropathy. Their importance as downstream mediators of tissue injury in diabetic kidney disease is demonstrated by animal studies using inhibitors of advanced glycation to retard the development of nephropathy without directly influencing glycemic control. AGE modification of proteins may produce in changes charge, solubility, and conformation leading to molecular dysfunction as well as disrupting interactions with other proteins. AGEs also interact with specific receptors and binding proteins to influence the renal expression of growth factors and cytokines, implicated in the progression of diabetic renal disease. The effects of AGEs appears to be synergistic with other pathogenic pathways in diabetes including oxidative stress, hypertension, and activation of the renin-angiotensin system. Each of these pathways may be activated by AGEs, and each may promote the formation of AGEs in the vicious cycle associated with progressive renal damage. It is likely that therapies that inhibit the formation of AGEs or remove established AGE modifications will form an important component part of future therapy in patients with diabetes, acting in concert with conventional approaches to prevent diabetic renal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app