JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models.

In the present work, the effect of stationary phase resin chemistry and protein physicochemical properties on protein binding affinity in hydrophobic interaction chromatography (HIC) was investigated using linear gradient chromatography and quantitative structure-retention relationship (QSRR) modeling. Linear gradient experiments were carried out for a set of model proteins on four different HIC resins having different backbone and ligand chemistry. The retention data exhibited significant differences in protein binding affinity, not only across the phenyl and butyl ligand chemistries, but also for the different backbone chemistries found in the Sepharose (cross-linked agarose) and the Toyopearl 650 M (polymethacrylate) series of resins. QSRR models based on a Support Vector Machine (SVM) approach were developed for the linear retention data using molecular descriptors based on protein crystal structure and primary sequence information as well as a set of new hydrophobicity descriptors based on the solvent accessible protein surface area. The results indicate that the QSRR models were successfully able to capture and selectivity predict the changes observed in these systems. Furthermore, the new descriptors resulted in physically interpretable models of protein retention and provided insights into the factors influencing protein affinity in these different HIC systems. The approach put forth in this study provides a framework for developing predictive tools and for gaining insight into protein selectivity in hydrophobic interaction chromatography.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app