Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

A novel antisense oligonucleotide inhibiting several antiapoptotic Bcl-2 family members induces apoptosis and enhances chemosensitivity in androgen-independent human prostate cancer PC3 cells.

Bcl-2 and Bcl-xL are associated with treatment resistance and progression in many cancers, including prostate cancer. The objective of this study was to determine whether a novel bispecific antisense oligonucleotide targeting both Bcl-2 and Bcl-xL induces apoptosis and enhances chemosensitivity in androgen-independent PC3 prostate cancer cells. An antisense oligonucleotide with complete sequence identity to Bcl-2 and three-base mismatches to Bcl-xL selected from five antisense oligonucleotides targeting various regions with high homology between Bcl-2 and Bcl-xL was found to be the most potent inhibitor of both Bcl-2 and Bcl-xL expression in PC3 cells. This selected Bcl-2/Bcl-xL bispecific antisense oligonucleotide reduced mRNA and protein levels in a dose-dependent manner, reducing Bcl-2 and Bcl-xL protein levels to 12% and 19%, respectively. Interestingly, Mcl-1 was down-regulated as well, although levels of Bax, Bad, or Bak were not altered after treatment with this bispecific antisense oligonucleotide. Indirect down-regulation of inhibitor of apoptosis (IAP) family, including XIAP, cIAP-1 and cIAP-2, via second mitochondria-derived activator of caspases was also observed after bispecific antisense oligonucleotide treatment. Executioner caspase-3, caspase-6, and caspase-7 were shown to be involved in apoptosis induced by bispecific antisense oligonucleotide. This Bcl-2/Bcl-xL bispecific antisense oligonucleotide also enhanced paclitaxel chemosensitivity in PC3 cells, reducing the IC50 of paclitaxel by >90%. These findings illustrate that combined suppression of antiapoptotic Bcl-2 family members using this antisense oligonucleotide could be an attractive strategy for inhibiting cancer progression through alteration of the apoptotic rheostat in androgen-independent prostate cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app