COMPARATIVE STUDY
IN VITRO
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modulation of excitatory synaptic transmission by endogenous glutamate acting on presynaptic group II mGluRs in rat substantia nigra compacta.

Excitatory synaptic inputs from the subthalamic nucleus (STN) have been proposed to underlie burst firing of substantia nigra pars compacta (SNc) dopamine (DA) neurons in Parkinson's disease. Given the potential importance of the STN-SNc synapse in health and disease, our goal was to study how transmission at this synapse is regulated. We tested the hypothesis that neurotransmission at STN-SNc synapses is tonically inhibited by endogenous glutamate acting on presynaptic group II metabotropic glutamate receptors (mGluRs). By using whole-cell recording techniques in brain slices, we examined the effect of LY341495, a mGluR antagonist that is most potent at group II mGluRs, on excitatory postsynaptic currents (EPSCs) that either were evoked in SNc DA neurons by stimulation of the STN or were spontaneously occurred in the presence of tetrodotoxin (miniature EPSCs; mEPSCs). LY341495 increased the evoked EPSC amplitude and mEPSC frequency without changing mEPSC amplitude. In contrast, the group III mGluR antagonist UBP1112 failed to increase the evoked EPSC amplitude. An elevation of extracellular glutamate concentration by a glutamate transporter inhibitor, TBOA, suppressed the evoked EPSCs. LY341495, but not UBP1112, partially reversed the TBOA action. The modulations of EPSCs by TBOA and LY341495 were associated with changes in paired-pulse facilitation ratio. Furthermore, TBOA decreased mEPSC frequency, which was partially reversed by LY341495, without affecting mEPSC amplitude. The results indicate that presynaptic group II mGluRs at STN-SNc synapses appear to be partially activated by a basal level of extracellular glutamate and able to sense the change in extracellular glutamate concentration, subsequently modulating synaptic glutamate release.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app