JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dual role of the coactivator TORC2 in modulating hepatic glucose output and insulin signaling.

Cell Metabolism 2005 November
Under fasting conditions, the cAMP-responsive CREB coactivator TORC2 promotes glucose homeostasis by stimulating the gluconeogenic program in liver. Following its nuclear translocation in response to elevations in circulating glucagon, TORC2 regulates hepatic gene expression via an association with CREB on relevant promoters. Here, we show that, in parallel with their effects on glucose output, CREB and TORC2 also enhance insulin signaling in liver by stimulating expression of the insulin receptor substrate 2 (IRS2) gene. The induction of hepatic IRS2 during fasting appears critical for glucose homeostasis; knockdown of hepatic IRS2 expression leads to glucose intolerance, whereas hepatic IRS2 overexpression attenuates the gluconeogenic program and reduces fasting glucose levels. By stimulating the expression of IRS2 in conjunction with gluconeogenic genes, the CREB:TORC2 pathway thus triggers a feedback response that limits glucose output from the liver during fasting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app