JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tissue plasminogen activator extravasated through the cerebral vessels: evaluation using a rat thromboembolic stroke model.

Neurotoxic effects of endogenous tissue plasminogen activator (tPA) have recently been reported. Employing a rat model of thromboembolic stroke, we evaluated the extent and degree of extravasation of exogenous tPA administered for the purpose of fibrinolysis. In a thromboembolic model using Sprague-Dawley rats, focal cerebral ischemia was induced at the territory of the middle cerebral artery (MCA). Early reperfusion was induced by administering tPA (10 mg/kg) intravenously at 30 minutes after the onset of ischemia. Extravasated tPA was evaluated by immunohistochemistry, and the concentration of tPA in the brain tissue was quantified by enzyme-linked immunosorbent assay methods. The integrity of the blood-brain barrier (BBB) was examined electronmicroscopically. In a thread model of transient ischemia, reperfusion was induced without tPA administration at 30 minutes or 2 hours after the onset of ischemia, and the tPA content of the brain was quantified. In the rats with thromboembolic stroke, extravasation of tPA was observed at the territory of the MCA. Both the endogenous and exogenous tPA contents were 3.5 +/- 1.6 ng/ml of homogenized brain in saline. Electronmicroscopically, mild ischemic changes were observed, although the integrity of the BBB was preserved. In the thread model rats, the endogenous tPA contents of the ischemic hemisphere were 0.9 +/- 0.1 and 1.0 +/- 0.2 ng/ml in the 30-minute and 2-hour ischemia groups, respectively, and were significantly lower than the tPA contents in the thromboembolic stroke rats (p<0.01). The present findings indicate that significant extravasation of exogenous tPA occurs through the cerebral vessels even though early reperfusion is induced.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app