We have located links that may give you full text access.
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
A highly sensitive polymerase chain reaction method detects activating mutations of the GNAS gene in peripheral blood cells in McCune-Albright syndrome or isolated fibrous dysplasia.
Journal of Bone and Joint Surgery. American Volume 2005 November
BACKGROUND: The somatic nature of mutations in the GNAS gene in McCune-Albright syndrome and isolated fibrous dysplasia makes their identification difficult. Conventional methods for the detection of mosaic mutations of GNAS have required polymerase chain reaction analysis of genomic DNA from affected tissues or multiple rounds of tandem polymerase chain reaction and endonuclease digestion to enrich for mutant alleles in genomic deoxyribonucleic acid (DNA) from other tissues. Peptide nucleic acid (PNA) primers specifically block synthesis from the nonmutant or wild-type allele. We therefore used PNA-clamping to detect low copy numbers of mutant GNAS alleles in DNA from peripheral blood cells from patients with McCune-Albright syndrome and fibrous dysplasia.
METHODS: We applied the PNA-clamping method to the analysis of genomic DNA from peripheral blood cells of thirteen patients with McCune-Albright syndrome and three patients with isolated fibrous dysplasia. Polymerase chain reaction was performed in the presence and absence of PNA, and the polymerase chain reaction products were sequenced. In the absence of PNA, a strong 325 base-pair polymerase chain reaction band was generated from all samples; in the presence of PNA, there was an approximately 50% to 90% reduction in the intensity of this polymerase chain reaction product.
RESULTS: In the absence of PNA, direct sequencing of the polymerase chain reaction products demonstrated R201 mutations in GNAS alleles of three of the thirteen patients with McCune-Albright syndrome and none of the three patients with fibrous dysplasia. In contrast, in the presence of PNA, R201 mutations were detected in eleven of the thirteen patients with McCune-Albright syndrome and in all three of the patients with fibrous dysplasia. In mixing experiments involving the use of wild-type and mutant DNA samples, we were able to determine the presence of a mutant GNAS allele in the equivalent of one cell in 1000 to 5000 cells.
CONCLUSIONS: Inclusion of a specific PNA primer in the polymerase chain reaction for GNAS exon 8 allows the selective amplification of low numbers of mutant alleles, and it permits detection of activating mutations in genomic DNA from peripheral blood cells in patients with McCune-Albright syndrome and fibrous dysplasia.
METHODS: We applied the PNA-clamping method to the analysis of genomic DNA from peripheral blood cells of thirteen patients with McCune-Albright syndrome and three patients with isolated fibrous dysplasia. Polymerase chain reaction was performed in the presence and absence of PNA, and the polymerase chain reaction products were sequenced. In the absence of PNA, a strong 325 base-pair polymerase chain reaction band was generated from all samples; in the presence of PNA, there was an approximately 50% to 90% reduction in the intensity of this polymerase chain reaction product.
RESULTS: In the absence of PNA, direct sequencing of the polymerase chain reaction products demonstrated R201 mutations in GNAS alleles of three of the thirteen patients with McCune-Albright syndrome and none of the three patients with fibrous dysplasia. In contrast, in the presence of PNA, R201 mutations were detected in eleven of the thirteen patients with McCune-Albright syndrome and in all three of the patients with fibrous dysplasia. In mixing experiments involving the use of wild-type and mutant DNA samples, we were able to determine the presence of a mutant GNAS allele in the equivalent of one cell in 1000 to 5000 cells.
CONCLUSIONS: Inclusion of a specific PNA primer in the polymerase chain reaction for GNAS exon 8 allows the selective amplification of low numbers of mutant alleles, and it permits detection of activating mutations in genomic DNA from peripheral blood cells in patients with McCune-Albright syndrome and fibrous dysplasia.
Full text links
Trending Papers
Monitoring Macro- and Microcirculation in the Critically Ill: A Narrative Review.Avicenna Journal of Medicine 2023 July
ANCA-associated vasculitis - Treatment Standard.Nephrology, Dialysis, Transplantation 2023 November 9
ASA Consensus-based Guidance on Preoperative Management of Patients on Glucagon-like Peptide-1 Receptor Agonists.Anesthesiology 2023 November 21
Common postbariatric surgery emergencies for the acute care surgeon: What you need to know.Journal of Trauma and Acute Care Surgery 2023 December 2
How we approach titrating PEEP in patients with acute hypoxemic failure.Critical Care : the Official Journal of the Critical Care Forum 2023 October 32
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app