Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Scanning cysteine mutagenesis analysis of Abeta-(1-40) amyloid fibrils.

We describe here the use of cysteine substitution mutants in the Alzheimer disease amyloid plaque peptide Abeta-(1-40) to probe amyloid fibril structure and stabilization. In one approach, amyloid fibrils were grown from Cys mutant peptides under reducing conditions and then challenged with an alkylating agent to probe solvent accessibility of different residues in the fibril. In another approach, monomeric Cys mutants, either in the thiol form or modified with iodoacetic acid or methyl iodide, were grown into amyloid fibrils, and the equilibrium position at the end of the amyloid formation reaction was quantified by determining the concentration of monomeric Abeta. The DeltaG values of fibril elongation obtained were then compared in order to provide information on the environment of each residue side chain in the fibril. In general, Cys residues in the N and C termini of Abeta-(1-40) were not only accessible to alkylation in the fibril state but also, when modified in the monomeric state, did not greatly impact fibril stability; these observations were consistent with previous indications that these portions of the peptide are not part of the amyloid core. In contrast, residues 16-19 and 31-34 were not only uniformly inaccessible to alkylation in the fibril state, but their modification with the negatively charged carboxymethyl group in monomeric Abeta also destabilized fibril elongation, confirming other data showing that these segments are likely packed into a hydrophobic amyloid core. Residues 20, 30, and 35, flanking these implicated beta-sandwich regions, are accessible to alkylation in the fibril indicating a location in solvent exposed structure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app