JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Egr-1 induces the expression of its corepressor nab2 by activation of the nab2 promoter thereby establishing a negative feedback loop.

The transcription factor Egr-1 regulates the expression of numerous genes involved in differentiation, growth, and in response to environmental signals. Egr-1 activity is modulated in part through the binding of corepressors Nab1 and Nab2. Nab2 appears crucial for controlling Egr-1-mediated transactivation because it is a delayed early response gene, induced by the same stimuli that induce the immediate early gene Egr-1. To identify important elements regulating Nab2 expression, we cloned the human Nab2 gene and investigated the 5'-region. The TATA- and initiator-less Nab2 promoter, located from -679 to -74 bp, contains a total of 11 Egr binding sites, including a cluster of multiple overlapping Egr/Sp1 sites between -329 and -260 bp. This region is critical for basal promoter activity as well as for maximum induction by phorbol esters. Electromobility shifts show that Sp1 binds to this region in normal and stimulated cells, whereas stimulation induces binding of Egr-1. In addition Egr-1 activates the Nab2 promoter in a pattern similar to phorbol esters, suggesting that Egr-1 is a major inducer of protein kinase C-mediated Nab2 induction. Depletion of Egr-1 by each of two distinct Egr-1 short-interfering RNAs reduces Nab2 expression and inducibility, confirming that Egr-1 is an important regulator of Nab2 expression. Transfection experiments show that Egr-1-induced Nab2 promoter activity is itself repressed by Nab2. These results indicate that Egr-1 mediates the induction of its own repressor, thereby preventing a permanent transactivation of Egr-1 target genes and a damaging overreaction in response to environmental signals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app