JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture.

BACKGROUND: The developmental history of the chondrocyte results in a cell whose biosynthetic activities are optimized to maintain the concentration and organization of a mechanically functional cartilaginous extracellular matrix. While useful for cartilage tissue engineering studies, the limited supply of healthy autologous chondrocytes may preclude their clinical use. Consequently, multipotential mesenchymal stem cells (MSCs) have been proposed as an alternative cell source.

OBJECTIVE: While MSCs undergo chondrogenesis, few studies have assessed the mechanical integrity of their forming matrix. Furthermore, efficiency of matrix formation must be determined in comparison to healthy chondrocytes from the same donor. Given the scarcity of healthy human tissue, this study determined the feasibility of isolating bovine chondrocytes and MSCs, and examined their long-term maturation in three-dimensional agarose culture.

EXPERIMENTAL DESIGN: Bovine MSCs were seeded in agarose and induced to undergo chondrogenesis. Mechanical and biochemical properties of MSC-laden constructs were monitored over a 10-week period and compared to those of chondrocytes derived from the same group of animals maintained similarly.

RESULTS: Our results show that while chondrogenesis does occur in MSC-laden hydrogels, the amount of the forming matrix and measures of its mechanical properties are lower than that produced by chondrocytes under the same conditions. Furthermore, some important properties, particularly glycosaminoglycan content and equilibrium modulus, plateau with time in MSC-laden constructs, suggesting that diminished capacity is not the result of delayed differentiation.

CONCLUSIONS: These findings suggest that while MSCs do generate constructs with substantial cartilaginous properties, further optimization must be done to achieve levels similar to those produced by chondrocytes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app