COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Protein synthesis and the mechanisms of lasting change in anxiety induced by severe stress.

Behavioural Brain Research 2006 Februrary 29
Brief, unprotected exposure of rats to cats (predator stress) may be lastingly anxiogenic in a variety of tests of rodent anxiety. Recent findings suggest that predator stress induced plasticity in neural circuitry implicated in fear learning underlies some of these anxiogenic effects. In addition, recent work implicates a consolidation-like process in the impact of predator stress on anxiety in that effects of predator stress may be interrupted by immediate post stressor pharmacological interventions. The present study tested whether "consolidation" of the anxiogenic effects of predator stress were dependent on protein synthesis. In addition, the study examined whether a protein synthesis dependent reconsolidation-like process was at work when rats were exposed to a cat twice. Anisomycin (210 mg/kg) or vehicle (Tween 80 in saline) was injected subcutaneously 1 min after a single cat exposure (consolidation test paradigm) or a 1 min after a second cat exposure (reconsolidation test paradigm) and behavior tested 7-8 days after predator stress. In the consolidation test paradigm, anisomycin blocked the anxiogenic effects of predator stress in the elevated plus maze (EPM) measured with open arm exploration. Moreover, anisomycin blocked the potentiation of startle by predator stress when rats were startled in the light, but not when startled in the dark. In contrast, the delay of habituation of startle produced by predator stress was unaffected by anisomycin. Suppression of risk assessment in the EPM by predator stress was not affected by anisomycin either. In startle testing, vehicle injection 1 min after predator stress led to a lasting suppression, rather than enhancement of startle response. Vehicle plus predator stress enhanced and prolonged corticosterone level changes sampled over 30-180 min after treatment when compared to handled or predator stressed only rats. In addition, predator stress plus vehicle suppression of startle was blocked by a benzodiazepine anxiolytic (chloradiazepoxide) or the glucorticoid receptor (GR) blocker RU486. Both drugs returned startle to the predator stressed only heightened levels. It is argued that an added anxiogenic effect of vehicle injection plus predator stress leads to a suppression, rather than enhancement of startle. Startle suppression appears to be mediated, in part, by activation of GR by corticosterone which engages a protein synthesis dependent process, since anisomycin blocked the startle suppressive effects of vehicle. Startle suppression also appeared to be independent of the startle enhancing effect of predator stress and in competition with it. Since predator stress may model aspects of hyperarousal associated with post traumatic stress disorder (PTSD), implications of these findings for understanding of mechanisms of initiation of the disorder and for treatment are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app