ENGLISH ABSTRACT
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Effects of transforming growth factor-beta/Smad signaling on the growth and apoptosis of human rhabdomyosarcoma cell line RD].

OBJECTIVE: To study the effects of TGF-beta/Smad signaling on the growth and apoptosis of human rhabdomyosarcoma cell line RD.

METHODS: Biosynthesized short hairpin RNA (shRNA) was transfected into RD cells by cation liposome vector to suppress Smad4 expression. The mRNA and protein expression of Smad4 in RD after shRNA-transfection were examined by RT-PCR and Western blot respectively. Immunofluorescent staining was used to detect the location of Smad2/3 in RD by laser scanning confocal microscopy. The viability of RD cells was examined by MTT method and (3)H-thymidine incorporation assay. The apoptosis of RD was examined by flow cytometry analysis and fluorescent staining.

RESULTS: The expression of mRNA and protein of Smad4 in RD were effectively suppressed by shRNA interference. Such suppression effectively interrupted the endogenous TGF-beta/Smad signaling and consequently blocked the translocation of Smad2/3. The interruption of endogenous TGF-beta/Smad signaling not only inhibited the growth of RD but also induced apoptosis of RD. Exogenous TGF-beta1 inhibited the growth of RD but did not influence the apoptosis of RD.

CONCLUSION: shRNA interference can effectively interrupt the TGF-beta/Smad signaling by suppressing the expression of Smad4. TGF-beta/Smad signaling subtly regulates the growth and apoptosis of RD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app