In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.

Skeletal muscle expresses two catalytic subunits, alpha1 and alpha2, of the 5'-AMP-activated protein kinase (AMPK), which has been implicated in contraction-stimulated glucose transport and fatty acid oxidation. Muscle contraction activates the alpha2-containing AMPK complex (AMPKalpha2), but this activation may occur with or without activation of the alpha1-containing AMPK complex (AMPKalpha1), suggesting that AMPKalpha2 is the major isoform responsible for contraction-induced metabolic events in skeletal muscle. We report for the first time that AMPKalpha1, but not AMPKalpha2, can be activated in contracting skeletal muscle. Rat epitrochlearis muscles were isolated and incubated in Krebs-Ringer bicarbonate buffer containing pyruvate. In muscles stimulated to contract at a frequency of 1 and 2 Hz during the last 2 min of incubation, AMPKalpha1 activity increased twofold and AMPKalpha2 activity remained unchanged. Muscle stimulation did not change the muscle AMP concentration or the AMP-to-ATP ratio. AMPK activation was associated with increased phosphorylation of Thr(172) of the alpha-subunit, the primary activation site. Muscle stimulation increased the phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of AMPK, and the rate of 3-O-methyl-d-glucose transport. In contrast, increasing the frequency (>or=5 Hz) or duration (>or=5 min) of contraction activated AMPKalpha1 and AMPKalpha2 and increased AMP concentration and the AMP/ATP ratio. These results suggest that 1) AMPKalpha1 is the predominant isoform activated by AMP-independent phosphorylation in low-intensity contracting muscle, 2) AMPKalpha2 is activated by an AMP-dependent mechanism in high-intensity contracting muscle, and 3) activation of each isoform enhances glucose transport and ACC phosphorylation in skeletal muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app