JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle.

OBJECTIVE: The biophysical properties and the regulation of the two-pore-domain potassium channel TREK-1 were studied in rat cardiomyocytes.

METHODS: RT-PCR, immunohistochemistry and patch-clamp recording were performed in isolated rat ventricular cardiomyocytes. In some whole-cell-clamp experiments the myocytes were mechanically stretched using a glass stylus.

RESULTS: We found strong expression of a splice variant of TREK-1 in rat heart. Immunohistochemistry with antibodies against TREK-1 showed localization of the channel in longitudinal stripes at the external surface membrane of cardiomyocytes. When the cardiomyocytes were mechanically stretched, an outwardly rectifying K+ current component could be detected in whole-cell recordings. In single-channel recordings with symmetrical high K+ solution, two TREK-like channels with 'flickery-burst' kinetics were found: a 'large conductance' K+ channel (132+/-5 pS at positive potentials) and a novel 'low-conductance' channel (41+/-5 pS at positive potentials). The low-conductance channel could be activated by negative pressure in inside-out patches, positive pressure in outside-out patches, intracellular acidification and application of arachidonic acid. Its open probability was strongly increased by depolarization, due to decreased duration of gaps between bursts. The biophysical properties of the two cardiac TREK-like channels were similar to those of TREK-1 channels expressed in HEK293 cells, which both displayed low- and high-conductance modes.

CONCLUSIONS: Our results suggest that the two TREK-like channels found in rat cardiomyocytes may reflect two different operating modes of TREK-1. The novel low-conductance channels described here may represent the major operating mode of TREK-1. The current flowing through mechanogated TREK-1 channels may serve to counterbalance the inward current flowing through stretch-activated non-selective cation channels during the filling phase of the cardiac cycle and thus to prevent the occurrence of ventricular extrasystoles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app