JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Genistein abrogates pre-hemolytic and oxidative stress damage induced by 2,2'-Azobis (Amidinopropane).

Life Sciences 2006 Februrary 10
The pre-hemolytic mechanism induced by free radicals initiated from water-soluble 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) and its reversal by genistein was investigated in human erythrocytes. The time course of K+ efflux compared to the occurrence of hemolysis suggests that AAPH-induced hemolysis occurs indirectly via pore formation and band 3 oxidation as expected. However, genistein inhibited hemolysis, LDH release and membrane protein oxidation but not K+ efflux. This indicated that erythrocyte protein oxidation possibly in the hydrophobic core plays a significant role in the membrane pre-hemolytic damage. Chemiluminescence (CL) analysis carried out in non-lysed erythrocytes treated with AAPH showed a dramatic increase in CL indicating both reduced levels of antioxidants and increased membrane lipid peroxide. The V0 value was also increased up to 6 times, denoting a high degree of membrane peroxidation very early in erythrocyte membrane damage. The whole process was inhibited by genistein in a dose-dependent manner. These results indicate that the genistein inhibited both hemolysis and pre-hemolytic damage and also hindered membrane lipid peroxide formation and protein oxidation. In addition, it is suggested that pre-hemolytic damage is mediated mainly by the oxidation of both phospholipid and protein located in the deeper hydrophobic region of the membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app