Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The spectrum of cardiovascular anomalies in CHF1/Hey2 deficient mice reveals roles in endocardial cushion, myocardial and vascular maturation.

CHF1/Hey2 null mice generated in different laboratories have discrepant cardiovascular phenotypes. To determine the effect of genetic background on phenotype, we backcrossed our knockout strain more than eight generations to the inbred strains BALB/c and C57BL/6. Knockout mice on these backgrounds showed disparate phenotypes. Mice on both backgrounds demonstrated ventricular septal defects (VSDs), tricuspid stenosis and mitral valve thickening, but at varying frequencies, suggesting a general defect in endocardial cushion remodeling. Additional defects seen exclusively on the C57BL/6 background included biventricular wall thinning and left ventricular enlargement, implying a more severe myocardial defect than previously observed. In addition, aortas and pulmonary arteries from these null mice had thinner walls. Intercrossing of the CHF1/Hey2 null mice on a C57BL/6 background with a C57BL/6 MLC2v-CHF1/Hey2 transgenic line overexpressing CHF1/Hey2 in the atrial and ventricular myocardium also rescued the VSD and myocardial phenotypes, but did not affect vascular wall thickness. Our results indicate that CHF1/Hey2 provides an important myocardial signal to the endocardial cushion for proper septation and valve formation and also plays an important role in maturation of the myocardium and vasculature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app