Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Roles of extracellular signal-regulated kinase and Akt signaling in coordinating nuclear transcription factor-kappaB-dependent cell survival after serotonin 1A receptor activation.

To investigate the functional consequences of cross-talk between multiple effectors of serotonin (5-HT) 1A receptor, we employed transfected Chinese hamster ovary cells. Activation of 5-HT 1A receptor stimulated extracellular signal-regulated kinase (ERK)1/2, Akt and nuclear transcription factor-kappaB (NF-kappaB). Stimulation of cells with 5-HT 1A receptor agonist induced a rapid but transient ERK1/2 phosphorylation followed by increased phosphorylation of Akt. Elevated Akt activity in turn suppressed Raf activity and induced a decline in ERK activation. The activation of ERK and Akt downstream of 5-HT 1A receptor was sensitive to inhibitors of Ras, Raf and phosphatidylinositol 3-kinase (PI3K). Stimulation of 5-HT 1A receptor also resulted in activation of NF-kappaB through a decrease in inhibitor of nuclear transcription factor-kappaB. In support of the importance of 5-HT 1A receptor signaling for cell survival, inhibition of NF-kappaB facilitated caspase 3 activation and cleavage of poly (ADP-ribose) polymerase, while treatment of cells with agonist inhibited caspase 3, DNA fragmentation and cell death. Both agonist-dependent NF-kappaB activation and cell survival were decreased by Akt Inhibitor II or by overexpression of dominant-negative Akt. These findings suggest a role for 5-HT 1A receptor signaling in the Ras/Raf-dependent regulation of multiple intracellular signaling pathways that include ERK and PI3K/Akt. Of these, only PI3K/Akt and NF-kappaB activation were required for 5-HT 1A receptor-dependent cell survival, implying that the relative distribution of signals between competing transduction pathways determines the functional outcome of 5-HT 1A receptor activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app