Add like
Add dislike
Add to saved papers

Direct production of allitol from D-fructose by a coupling reaction using D-tagatose 3-epimerase, ribitol dehydrogenase and formate dehydrogenase.

Allitol was produced from D-fructose via a new NADH-regenerating enzymatic reaction system using D-tagatose 3-epimerase (D-TE), ribitol dehydrogenase (RDH), and formate dehydrogenase (FDH). D-fructose was epimerized to D-psicose by the D-TE of Pseudomonas cichorii ST-24 and the D-psicose was subsequently reduced to allitol by the RDH of an RDH-constitutive mutant, X-22, derived from Klebsiella pneumoniae IFO 3321. NADH regeneration for the reduction of D-psicose by the RDH was achieved by the irreversible formate dehydrogenase reaction, which allowed the D-psicose produced from d-fructose to be successively transformed to allitol with a production yield from D-fructose of almost 100%. The reactions progressed without any by-product formation. After separation of the product from the reaction mixture by a simple procedure, a crystal of allitol was obtained in a yield exceeding 90%. This crystal was characterized and determined to be allitol by HPLC analysis, its IR and NMR spectra, its melting point, and optical rotation measurement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app