Add like
Add dislike
Add to saved papers

The effects of resisted sled-pulling sprint training on acceleration and maximum speed performance.

AIM: The purpose of the present study was to examine the effects of resisted (RS) and un-resisted (US) sprint training programs on acceleration and maximum speed performance.

METHODS: Twenty-two male students (age 20.1+/-1.9 y, height 1.78+/-7 cm, and weight 73+/-2 kg) completed RS (n=11) or US (n=11) sprint training programs. The RS group followed a sprint-training program with 5 kg sled pulling and the US group followed a similar sprint-training program without sled pulling. The training program consisted of 4x20 m and 4x50 m maximal runs, and was applied 3 times/week for 8 weeks. Before and after the training programs the subjects performed a 50 m run and the running velocity of 0(-1)0 m, 10(-2)0 m, 20-40 m and 40-50 m was measured. In addition, stride length and stride frequency were evaluated at the 3(rd) stride in acceleration phase and between 42-47 m in maximum speed phase.

RESULTS: The RS improved running velocity in the run sections 0(-1)0 m and 0(-2)0 m, while in US group the running velocity in all run sections in acceleration phase remained unchanged (p>0.05). In contrast, RS training had no effect on running velocity in maximum speed phase, whereas US improved running velocity in 20-40 m, 40-50 m, and 20-50 m run sections (p<0.05). Stride rate increased only after RS in acceleration phase (+7.1+/-2.9%; p<0.05), whereas stride length increased only after US in maximum speed phase (+5.5+/-2.5%; p<0.05).

CONCLUSION: Sprint training with 5 kg sled pulling for 8 weeks improves acceleration performance (0(-2)0), while un-resisted sprint training improves performance in maximum speed phase (20-40) in non-elite athletes. It appears that each phase of sprint run demands a specific training approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app