Add like
Add dislike
Add to saved papers

Bulk tank somatic cell counts analyzed by statistical process control tools to identify and monitor subclinical mastitis incidence.

The objective of this study was to examine the relationship between monthly Dairy Herd Improvement (DHI) subclinical mastitis and new infection rate estimates and daily bulk tank somatic cell count (SCC) summarized by statistical process control tools. Dairy Herd Improvement Association test-day subclinical mastitis and new infection rate estimates along with daily or every other day bulk tank SCC data were collected for 12 mo of 2003 from 275 Upper Midwest dairy herds. Herds were divided into 5 herd production categories. A linear score [LNS = ln(BTSCC/100,000)/0.693147 + 3] was calculated for each individual bulk tank SCC. For both the raw SCC and the transformed data, the mean and sigma were calculated using the statistical quality control individual measurement and moving range chart procedure of Statistical Analysis System. One hundred eighty-three herds of the 275 herds from the study data set were then randomly selected and the raw (method 1) and transformed (method 2) bulk tank SCC mean and sigma were used to develop models for predicting subclinical mastitis and new infection rate estimates. Herd production category was also included in all models as 5 dummy variables. Models were validated by calculating estimates of subclinical mastitis and new infection rates for the remaining 92 herds and plotting them against observed values of each of the dependents. Only herd production category and bulk tank SCC mean were significant and remained in the final models. High R2 values (0.83 and 0.81 for methods 1 and 2, respectively) indicated a strong correlation between the bulk tank SCC and herd's subclinical mastitis prevalence. The standard errors of the estimate were 4.02 and 4.28% for methods 1 and 2, respectively, and decreased with increasing herd production. As a case study, Shewhart Individual Measurement Charts were plotted from the bulk tank SCC to identify shifts in mastitis incidence. Four of 5 charts examined signaled a change in bulk tank SCC before the DHI test day identified the change in subclinical mastitis prevalence. It can be concluded that applying statistical process control tools to daily bulk tank SCC can be used to estimate subclinical mastitis prevalence in the herd and observe for change in the subclinical mastitis status. Single DHI test day estimates of new infection rate were insufficient to accurately describe its dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app