Add like
Add dislike
Add to saved papers

A novel somatic mutation of the 3beta-hydroxysteroid dehydrogenase gene in sporadic cutaneous verruciform xanthoma.

OBJECTIVE: To analyze the 3beta-hydroxysteroid dehydrogenase (NSDHL) gene in verruciform xanthoma (VX) to elucidate its potential role in the histogenesis of this lesion.

DESIGN: DNA was extracted from paraffin-embedded tissue, followed by polymerase chain reaction amplification of exons 4 and 6 of the NSDHL gene. The polymerase chain reaction products were then directly sequenced and analyzed for the presence of somatic mutations.

PATIENTS: Nine lesions of VX from 8 patients and 3 unrelated normal controls were evaluated.

RESULTS: Two of 9 VXs (22%) demonstrated a novel somatic missense mutation in exon 6 of the NSDHL gene. The mutation was not present in the remaining 7 lesions of VX, nonlesional internal controls, and 3 unrelated normal controls. No mutation of exon 4 was found in any case. Mutations of exons 4 and 6 previously identified in CHILD syndrome were not seen in our cases.

CONCLUSIONS: (1) A novel missense mutation (R199H) in exon 6 of the NSDHL gene was identified in a small subset of sporadic VXs. (2) Known CHILD syndrome mutations in exons 4 and 6 of the NSDHL gene do not contribute to the histogenesis of sporadic VXs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app