Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

The renal cortical fibroblast in renal tubulointerstitial fibrosis.

Renal cortical fibroblasts have key roles in mediating intercellular communication with neighboring/infiltrating cells and extracellular matrix (ECM) and maintenance of renal tissue architecture. They express a variety of cytokines, chemokines, growth factors and cell adhesion molecules, playing an active role in paracrine and autocrine interactions and regulating both fibrogenesis and the interstitial inflammatory response. They additionally have an endocrine function in the production of epoetin. Tubulointerstitial fibrosis, the common pathological consequence of renal injury, is characterized by the accumulation of extracellular matrix largely due to excessive production in parallel with reduced degradation, and activated fibroblasts characterized by a myofibroblastic phenotype. Fibroblasts in the kidney may derive from resident fibroblasts, from the circulating fibroblast population or from haemopoetic progenitor or stromal cells derived from the bone marrow. Cells exhibiting a myofibroblastic phenotype may derive from these sources and from tubular cells undergoing epithelial to mesenchymal transformation in response to renal injury. The number of interstitial myofibroblasts correlates closely with tubulointerstitial fibrosis and progressive renal failure. Hence inhibiting myofibroblast formation may be an effective strategy in attenuating the development of renal failure in kidney disease of diverse etiology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app