JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Monovalent cation leaks in human red cells caused by single amino-acid substitutions in the transport domain of the band 3 chloride-bicarbonate exchanger, AE1.

Nature Genetics 2005 November
We identified 11 human pedigrees with dominantly inherited hemolytic anemias in both the hereditary stomatocytosis and spherocytosis classes. Affected individuals in these families had an increase in membrane permeability to Na and K that is particularly marked at 0 degrees C. We found that disease in these pedigrees was associated with a series of single amino-acid substitutions in the intramembrane domain of the erythrocyte band 3 anion exchanger, AE1. Anion movements were reduced in the abnormal red cells. The 'leak' cation fluxes were inhibited by SITS, dipyridamole and NS1652, chemically diverse inhibitors of band 3. Expression of the mutated genes in Xenopus laevis oocytes induced abnormal Na and K fluxes in the oocytes, and the induced Cl transport was low. These data are consistent with the suggestion that the substitutions convert the protein from an anion exchanger into an unregulated cation channel.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app