The influence of missing value imputation on detection of differentially expressed genes from microarray data

Ida Scheel, Magne Aldrin, Ingrid K Glad, Ragnhild Sørum, Heidi Lyng, Arnoldo Frigessi
Bioinformatics 2005 December 1, 21 (23): 4272-9

MOTIVATION: Missing values are problematic for the analysis of microarray data. Imputation methods have been compared in terms of the similarity between imputed and true values in simulation experiments and not of their influence on the final analysis. The focus has been on missing at random, while entries are missing also not at random.

RESULTS: We investigate the influence of imputation on the detection of differentially expressed genes from cDNA microarray data. We apply ANOVA for microarrays and SAM and look to the differentially expressed genes that are lost because of imputation. We show that this new measure provides useful information that the traditional root mean squared error cannot capture. We also show that the type of missingness matters: imputing 5% missing not at random has the same effect as imputing 10-30% missing at random. We propose a new method for imputation (LinImp), fitting a simple linear model for each channel separately, and compare it with the widely used KNNimpute method. For 10% missing at random, KNNimpute leads to twice as many lost differentially expressed genes as LinImp.

AVAILABILITY: The R package for LinImp is available at

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"