Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exploration of "over kill effect" of high-LET Ar- and Fe-ions by evaluating the fraction of non-hit cell and interphase death.

The reason why RBE for cell killing fell to less than unity (1.0) with very high-LET heavy-ions ((40)Ar: 1,640 keV/microm; (56)Fe: 780, 1,200, 2,000 keV/microm) was explored by evaluating the fraction of non-hit cell (time-lapse observation) and cells undergoing interphase death (calculation based on our previous data). CHO cells were exposed to 4 Gy (30% survival dose) of Ar (1,640 keV/microm) or Fe-ions (2,000 keV/microm). About 20% of all cells were judged to be non-hit, and about 10% cells survived radiation damage. About 70% cells died after dividing at least once (reproductive death) or without dividing (interphase death). RBE for reproductive (RBE[R]) and interphase (RBE[I]) death showed a similar LET dependence with maximum around 200 keV/microm. In this LET region, at 30% survival level, about 10% non-survivors underwent interphase death. The corresponding value for very high-LET Fe-ions (2,000 keV/microm) was not particularly high (approximately 15%), whereas that for X-rays was less than 3%. However, reproductive death (67%) predominated over interphase death (33%) even in regard to rather severely damaged cells (1% survival level) after exposure to Fe-ions (2,000 keV/microm). These indicate that interphase death is a type of cell death characteristic for the cells exposed to high-LET radiation and is not caused by "cellular over kill effect". Both NHF37 (non-hit fraction at 37% survival) and inactivation cross-section for reproductive death (sigma[R]) began to increase when LET exceeded 100 keV/microm. The exclusion of non-hit fraction in the calculation of surviving fraction partially prevented the fall of RBE[R] when LET exceeded 200 keV/microm. On the other hand, the mean number of lethal damage per unit dose (NLD/Gy) showed the same LET-dependent pattern as RBE[R]. These suggest that the increase in non-hit fraction and sigma[R] with an increasing LET is caused by enhanced clustering of ionization and DNA damage which lowers the energy efficiency for producing damage and RBE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app