Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease.

Journal of Immunology 2005 October 16
Mimicry between streptococcal M protein and cardiac myosin is important in the pathogenesis of rheumatic heart disease. M protein-specific human T cell clones derived from rheumatic carditis were cross-reactive with human cardiac myosin, and laminin, a valve protein. Among the 11 CD4(+) and CD8(+) cross-reactive T cell clones, at least 6 different reactivity patterns were distinguished, suggesting different degrees of cross-reactivity and a very diverse T cell repertoire. The latter was confirmed by a heterogeneous Vbeta gene and CDR3 usage. HLA restriction and Th1 cytokine production in response to rM6 protein were preserved when the T cell clones were stimulated by human cardiac myosin or other alpha-helical proteins, such as tropomyosin and laminin. The cross-reactive human T cell clones proliferated to B2 and B3A, dominant peptide epitopes in the B repeat region of streptococcal M protein. In human cardiac myosin, epitopes were demonstrated in the S2 and light meromyosin regions. In our study, T cell mimicry was defined as recognition of structurally related Ags involved in disease and recognized by the same T cell. Mimicry in our study was related to alpha-helical coiled coil proteins which have a repetitive seven-aa residue periodicity that maintains alpha-helical structure and thus creates a high number of degenerate possibilities for recognition by T cells. The study of human T cell clones from rheumatic heart disease revealed potential sites of T cell mimicry between streptococcal M protein and human cardiac myosin and represents some of the most well-defined T cell mimicry in human autoimmune disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app