RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
T cell mimicry and epitope specificity of cross-reactive T cell clones from rheumatic heart disease.
Journal of Immunology 2005 October 16
Mimicry between streptococcal M protein and cardiac myosin is important in the pathogenesis of rheumatic heart disease. M protein-specific human T cell clones derived from rheumatic carditis were cross-reactive with human cardiac myosin, and laminin, a valve protein. Among the 11 CD4(+) and CD8(+) cross-reactive T cell clones, at least 6 different reactivity patterns were distinguished, suggesting different degrees of cross-reactivity and a very diverse T cell repertoire. The latter was confirmed by a heterogeneous Vbeta gene and CDR3 usage. HLA restriction and Th1 cytokine production in response to rM6 protein were preserved when the T cell clones were stimulated by human cardiac myosin or other alpha-helical proteins, such as tropomyosin and laminin. The cross-reactive human T cell clones proliferated to B2 and B3A, dominant peptide epitopes in the B repeat region of streptococcal M protein. In human cardiac myosin, epitopes were demonstrated in the S2 and light meromyosin regions. In our study, T cell mimicry was defined as recognition of structurally related Ags involved in disease and recognized by the same T cell. Mimicry in our study was related to alpha-helical coiled coil proteins which have a repetitive seven-aa residue periodicity that maintains alpha-helical structure and thus creates a high number of degenerate possibilities for recognition by T cells. The study of human T cell clones from rheumatic heart disease revealed potential sites of T cell mimicry between streptococcal M protein and human cardiac myosin and represents some of the most well-defined T cell mimicry in human autoimmune disease.
Full text links
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app