Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking.

Cerebral Cortex 2006 July
The corpus callosum, the principal white matter structure enabling interhemispheric information transfer, is heterogeneous in its microstructural composition, heterotopic in its anteroposterior cortical connectivity, and differentially susceptible to aging. In vivo characterization of callosal features is possible with diffusion tensor imaging (DTI), a magnetic resonance imaging method sensitive to the detection of white matter's linear structure. We implemented a quantitative fiber tracking approach to examine age-related variation in regional microstructural characteristics [fractional anisotropy (FA) and apparent diffusion coefficient (ADC)] of callosal fibers in 10 younger (29 +/- 5 years) and 10 older (72 +/- 5 years) healthy adults. Fiber tracking was performed on 2.5 mm isotropic voxels collected at 3 T. Fiber targets comprised the midsagittal corpus callosum, divided into six regions based on known callosal anatomical projections. FA and ADC for each voxel of each fiber identified were determined; lower FA and higher ADC reflect degraded microstructural tissue integrity. Older subjects had lower FA (P < 0.002), higher ADC (P < 0.006), and fewer (P < 0.005) fibers than younger subjects. Group x region interactions indicated disproportionately lower FA (P = 0.0001) and higher ADC (P < 0.006) in the older than younger group in frontal fiber bundles relative to posterior bundles. As a test of the functional significance of the fiber bundle metrics, the older subjects were administered the Stroop Task, which showed significant correlations between regional fiber bundle integrity and performance. These results validate this quantitative fiber tracking approach and confirm the selective vulnerability of frontal white matter systems to normal aging, likely substrates of age-related declines in cognitive processes dependent on prefrontal circuitry integrity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app