COMPARATIVE STUDY
JOURNAL ARTICLE

Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure formation

Luciano G Frigeri, Timothy R Radabaugh, Paul A Haynes, Mark Hildebrand
Molecular & Cellular Proteomics: MCP 2006, 5 (1): 182-93
16207702
Diatoms are unicellular eucaryotic algae with cell walls containing silica, intricately and ornately structured on the nanometer scale. Overall silica structure is formed by expansion and molding of the membrane-bound silica deposition vesicle. Although molecular details of silica polymerization are being clarified, we have limited insight into molecular components of the silica deposition vesicle, particularly of membrane-associated proteins that may be involved in structure formation. To identify such proteins, we refined existing procedures to isolate an enriched cell wall fraction from the diatom Thalassiosira pseudonana, the first diatom with a sequenced genome. We applied tandem mass spectrometric analysis to this fraction, identifying 31 proteins for further evaluation. mRNA levels for genes encoding these proteins were monitored during synchronized progression through the cell cycle and compared with two previously identified silaffin genes (involved in silica polymerization) having distinct mRNA patterns that served as markers for cell wall formation. Of the 31 proteins identified, 10 had mRNA patterns that correlated with the silaffins, 13 had patterns that did not, and seven had patterns that correlated but also showed additional features. The possible involvements of these proteins in cell wall synthesis are discussed. In particular, glutamate acetyltransferase was identified, prompting an analysis of mRNA patterns for other genes in the polyamine biosynthesis pathway and identification of those induced during cell wall synthesis. Application of a specific enzymatic inhibitor for ornithine decarboxylase resulted in dramatic alteration of silica structure, confirming the involvement of polyamines and demonstrating that manipulation of proteins involved in cell wall synthesis can alter structure. To our knowledge, this is the first proteomic analysis of a diatom, and furthermore we identified new candidate genes involved in structure formation and directly demonstrated the involvement of one enzyme (and its gene) in the structure formation process.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16207702
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"