COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat.

Diabetologia 2005 November
AIMS/HYPOTHESIS: Intake of n-3 polyunsaturated fatty acids reduces adipose tissue mass, preferentially in the abdomen. The more pronounced effect of marine-derived eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on adiposity, compared with their precursor alpha-linolenic acid, may be mediated by changes in gene expression and metabolism in white fat.

METHODS: The effects of EPA/DHA concentrate (6% EPA, 51% DHA) admixed to form two types of high-fat diet were studied in C57BL/6J mice. Oligonucleotide microarrays, cDNA PCR subtraction and quantitative real-time RT-PCR were used to characterise gene expression. Mitochondrial proteins were quantified using immunoblots. Fatty acid oxidation and synthesis were measured in adipose tissue fragments.

RESULTS: Expression screens revealed upregulation of genes for mitochondrial proteins, predominantly in epididymal fat when EPA/DHA concentrate was admixed to a semisynthetic high-fat diet rich in alpha-linolenic acid. This was associated with a three-fold stimulation of the expression of genes encoding regulatory factors for mitochondrial biogenesis and oxidative metabolism (peroxisome proliferator-activated receptor gamma coactivator 1 alpha [Ppargc1a, also known as Pgc1alpha] and nuclear respiratory factor-1 [Nrf1] respectively). Expression of genes for carnitine palmitoyltransferase 1A and fatty acid oxidation was increased in epididymal but not subcutaneous fat. In the former depot, lipogenesis was depressed. Similar changes in adipose gene expression were detected after replacement of as little as 15% of lipids in the composite high-fat diet with EPA/DHA concentrate, while the development of obesity was reduced. The expression of Ppargc1a and Nrf1 was also stimulated by n-3 polyunsaturated fatty acids in 3T3-L1 cells.

CONCLUSIONS/INTERPRETATION: The anti-adipogenic effect of EPA/DHA may involve a metabolic switch in adipocytes that includes enhancement of beta-oxidation and upregulation of mitochondrial biogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app