JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Changes in interneuronal phenotypes regulated by estradiol in the adult rat hippocampus: a potential role for neuropeptide Y.

Ovarian hormones regulate pyramidal cell synapse formation and excitability and interneuronal GABAergic tone in the CA1 region of the adult female rat hippocampus. The role of 17beta-estradiol in these effects is complex and appears to involve a subset of hippocampal interneurons, which express different calcium-binding protein and neuropeptide phenotypes and nuclear estrogen receptor alpha. We found that, in the hippocampus, nuclear estrogen receptor alpha-immunoreactive interneurons co-express neuropeptide Y, calbindin-D28k and calretinin but do not parvalbumin or cholecystokinin. Moreover, a proportion of neuropeptide Y-immunoreactive interneurons co-expresses calbindin-D28k and calretinin. This pattern is similar in the presence or absence of 17beta-estradiol treatment in ovariectomized rats. We then used immunohistochemistry and in situ hybridization to determine whether 17beta-estradiol treatment regulates expression of CA1 interneuronal phenotypic markers via nuclear estrogen receptor alpha activation. We found that 17beta-estradiol treatment of ovariectomized rats increased neuropeptide Y mRNA levels (25%) and the neuropeptide Y mRNA-associated grain density per cell (11%), as well as the number of neuropeptide Y-immunoreactive cells (11%), predominantly in the pyramidal cell layer (stratum pyramidale). Treatment with CI628, a selective estrogen response modulator that acts as an antagonist for nuclear estrogen receptor, blocked 17beta-estradiol-induced increase of neuropeptide Y mRNA levels. 17beta-Estradiol treatment did not alter the number of parvalbumin, calretinin, and cholecystokinin immunoreactive cells, nor mRNA levels for parvalbumin and cholecystokinin. Therefore, the present study has identified neuropeptide Y expression as the main interneuronal phenotype that co-expresses nuclear estrogen receptor alpha and shown that neuropeptide Y is responsive to 17beta-estradiol in CA1 pyramidal cell layer. We suggest that 17beta-estradiol may regulate neuropeptide Y expression mediated by nuclear estrogen receptor alpha-dependent activation in a subset of hippocampal interneurons, and we speculate that subsequent neuropeptide Y release may indirectly contribute to regulate glutamate-dependent neuronal activity in the adult rat hippocampus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app