JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Long-term correction of murine glycogen storage disease type Ia by recombinant adeno-associated virus-1-mediated gene transfer.

Gene Therapy 2006 Februrary
Glycogen storage disease type Ia (GSD-Ia) is caused by a deficiency in glucose-6-phosphatase-alpha (G6Pase-alpha), a nine-transmembrane domain, endoplasmic reticulum-associated protein expressed primarily in the liver and kidney. Previously, we showed that infusion of an adeno-associated virus (AAV) serotype 2 vector carrying murine G6Pase-alpha (AAV2-G6Pase-alpha) into neonatal GSD-Ia mice failed to sustain their life beyond weaning. We now show that neonatal infusion of GSD-Ia mice with an AAV serotype 1-G6Pase-alpha (AAV1-G6Pase-alpha) or AAV serotype 8-G6Pase-alpha (AAV8-G6Pase-alpha) results in hepatic expression of the G6Pase-alpha transgene and markedly improves the survival of the mice. However, only AAV1-G6Pase-alpha can achieve significant renal transgene expression. A more effective strategy, in which a neonatal AAV1-G6Pase-alpha infusion is followed by a second infusion at age one week, provides sustained expression of a complete, functional, G6Pase-alpha system in both the liver and kidney and corrects the metabolic abnormalities in GSD-Ia mice for the 57 week length of the study. This effective use of gene therapy to correct metabolic imbalances and disease progression in GSD-Ia mice holds promise for the future of gene therapy in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app