JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracellular versus cell surface assembly of retroviral pseudotypes is determined by the cellular localization of the viral glycoprotein, its capacity to interact with Gag, and the expression of the Nef protein.

Retroviral Gag and Env glycoproteins (GPs) are expressed from distinct cellular areas and need to encounter to interact and assemble infectious particles. Retroviral particles may also incorporate GPs derived from other enveloped viruses via active or passive mechanisms, a process known as "pseudotyping." To further understand the mechanisms of pseudotyping, we have investigated the capacity of murine leukemia virus (MLV) or lentivirus core particles to recruit GPs derived from different virus families: the G protein of vesicular stomatitis virus (VSV-G), the hemagglutinin from an influenza virus, the E1E2 glycoproteins of hepatitis C virus (HCV-E1E2), and the retroviral Env glycoproteins of MLV and RD114 cat endogenous virus. The parameters that influenced the incorporation of viral GPs onto retroviral core particles were (i) the intrinsic cell localization properties of both viral GP and retroviral core proteins, (ii) the ability of the viral GP to interact with the retroviral core, and (iii) the expression of the lentiviral Nef protein. Whereas the hemagglutinin and VSV-G glycoproteins were recruited by MLV and lentivirus core proteins at the cell surface, the HCV and MLV GPs were most likely recruited in late endosomes. In addition, whereas these glycoproteins could be passively incorporated on either retrovirus type, the MLV GP was also actively recruited by MLV core proteins, which, through interactions with the cytoplasmic tail of the latter GP, induced its localization to late endosomal vesicles. Finally, the expression of Nef proteins specifically enhanced the incorporation of the retroviral GPs by increasing their localization in late endosomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app