JOURNAL ARTICLE
REVIEW

Science of rugby league football: a review

Tim J Gabbett
Journal of Sports Sciences 2005, 23 (9): 961-76
16195048
The purpose of this paper is to provide a comprehensive review of the science of rugby league football at all levels of competition (i.e. junior, amateur, semi-professional, professional), with special reference to all discipline-specific scientific research performed in rugby league (i.e. physiological, psychological, injury epidemiology, strength and conditioning, performance analysis). Rugby league football is played at junior and senior levels in several countries worldwide. A rugby league team consists of 13 players (6 forwards and 7 backs). The game is played over two 30 - 40 min halves (depending on the standard of competition) separated by a 10 min rest interval. Several studies have documented the physiological capacities and injury rates of rugby league players. More recently, studies have investigated the physiological demands of competition. Interestingly, the physiological capacities of players, the incidence of injury and the physiological demands of competition all increase as the playing standard is increased. Mean blood lactate concentrations of 5.2, 7.2 and 9.1 mmol . l(-1) have been reported during competition for amateur, semi-professional and professional rugby league players respectively. Mean heart rates of 152 beats . min(-1) (78% of maximal heart rate), 166 beats . min(-1) (84% of maximal heart rate) and 172 beats . min(-1) (93% of maximal heart rate) have been recorded for amateur, semi-professional and junior elite rugby league players respectively. Skill-based conditioning games have been used to develop the skill and fitness of rugby league players, with mean heart rate and blood lactate responses during these activities almost identical to those obtained during competition. In addition, recent studies have shown that most training injuries are sustained in traditional conditioning activities that involve no skill component (i.e. running without the ball), whereas the incidence of injuries while participating in skill-based conditioning games is low. Collaborative research among the various sport science disciplines is required to identify strategies to reduce the incidence of injury and enhance the performance of rugby league players. An understanding of the movement patterns and physiological demands of different positions at all standards of competition would allow the development of strength and conditioning programmes to meet the precise requirements of these positions. Finally, studies investigating the impact of improvements in physiological capacities (including the effect of different strength and conditioning programmes) on rugby league playing performance are warranted.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
16195048
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"