JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Cell wall integrity is dependent on the PKC1 signal transduction pathway in Cryptococcus neoformans.

Cell wall biogenesis and integrity are crucial for fungal growth, pathogenesis and survival, and are attractive targets for antifungal therapy. In this study, we identify, delete and analyse mutant strains for 10 genes involved in the PKC1 signal transduction pathway and its regulation in Cryptococcus neoformans. The kinases Bck1 and Mkk2 are critical for maintaining integrity, and deletion of each of these causes severe phenotypes different from each other. In stark contrast to results seen in Saccharomyces cerevisiae, a deletion in LRG1 has severe repercussions for the cell, and one in ROM2 has little effect. Also surprisingly, the phosphatase Ppg1 is crucial for cell integrity. These data indicate that the mechanisms of maintaining cell integrity differ between the two fungi. Deletions in SSD1 and PUF4, potential alternative regulators of cell integrity, also exhibit phenotypes. This is the first comprehensive analysis examining genes involved the maintenance of cell integrity in C. neoformans and sets the foundation for future biochemical and virulence studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app