Transcriptional repression of the C/EBP-alpha and GLUT4 genes in 3T3-L1 adipocytes by tumor necrosis factor-alpha. Regulations is coordinate and independent of protein synthesis

J M Stephens, P H Pekala
Journal of Biological Chemistry 1992 July 5, 267 (19): 13580-4
We have previously demonstrated the ability of tumor necrosis factor-alpha (TNF) to down-regulate the expression of GLUT4 (insulin-responsive glucose transporter) and C/EBP-alpha (CCAAT/enhancer-binding protein) (Stephens J. M., and Pekala, P. H. (1991) J. Biol. Chem. 266, 21839-21845). As C/EBP-alpha has been suggested to control GLUT4 expression, we have examined the time course for attenuation of transcription of these genes. Run-on transcription assays indicate a coordinate transcriptional repression of both GLUT4 and C/EBP-alpha genes (as well as the 422/aP2 gene, the adipocyte lipid-binding protein, whose expression has also been proposed to be controlled by C/EBP-alpha). Inhibition of transcription was observed within 1 h of TNF addition, with maximal suppression observed after 4 h. The inhibition was not blocked by cycloheximide. Okadaic acid treatment (1 h, 0.5 microM) also resulted in the coordinate transcriptional repression of the C/EBP-alpha, GLUT4, and 422/aP2 genes, consistent with involvement of a kinase-phosphatase system in the regulation of these genes. The decrease in C/EBP-alpha protein content was detectable 4 h after TNF addition and declined to 25% of controls within 24 h. A minor decrease in the protein content of GLUT4 was observed during the first 24 h of exposure to TNF; however, after 72 h of exposure GLUT4 protein was not detectable. The rapid coordinate transcriptional regulation of C/EBP-alpha, GLUT4, and 422/aP2 by TNF in the presence of cycloheximide suggests that the TNF-induced loss of GLUT4 protein may be mediated by a post-translational modification of an existing transcription factor. However, the rapid loss of C/EBP-alpha protein may be a contributing factor to further transcriptional suppression of the GLUT4 gene at the later time points. In addition to the transcriptional effect, we report that TNF-induced destabilization of these mRNAs contributes to decreased expression of all three genes.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"