COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Evaluation of sample recovery of malodorous livestock gases from air sampling bags, solid-phase microextraction fibers, Tenax TA sorbent tubes, and sampling canisters.

Odorous gases associated with livestock operations are complex mixtures of hundreds if not thousands of compounds. Research is needed to know how best to sample and analyze these compounds. The main objective of this research was to compare recoveries of a standard gas mixture of 11 odorous compounds from the Carboxen/PDMS 75-microm solid-phase microextraction fibers, polyvinyl fluoride (PVF; Tedlar), fluorinated ethylene propylene copolymer (FEP; Teflon), foil, and polyethylene terephthalate (PET; Melinex) air sampling bags, sorbent 2,b-diphenylene-oxide polymer resin (Tenax TA) tubes, and standard 6-L Stabilizer sampling canisters after sample storage for 0.5, 24, and 120 (for sorbent tubes only) hrs at room temperature. The standard gas mixture consisted of 7 volatile fatty acids (VFAs) from acetic to hexanoic, and 4 semivolatile organic compounds including p-cresol, indole, 4-ethylphenol, and 2'-aminoacetophenone with concentrations ranging from 5.1 ppb for indole to 1270 ppb for acetic acid. On average, SPME had the highest mean recovery for all 11 gases of 106.2%, and 98.3% for 0.5- and 24-hr sample storage time, respectively. This was followed by the Tenax TA sorbent tubes (94.8% and 88.3%) for 24 and 120 hr, respectively; PET bags (71.7% and 47.2%), FEP bags (75.4% and 39.4%), commercial Tedlar bags (67.6% and 22.7%), in-house-made Tedlar bags (47.3% and 37.4%), foil bags (16.4% and 4.3%), and canisters (4.2% and 0.5%), for 0.5 and 24 hr, respectively. VFAs had higher recoveries than semivolatile organic compounds for all of the bags and canisters. New FEP bags and new foil bags had the lowest and the highest amounts of chemical impurities, respectively. New commercial Tedlar bags had measurable concentrations of N,N-dimethyl acetamide and phenol. Foil bags had measurable concentrations of acetic, propionic, butyric, valeric, and hexanoic acids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app