JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Connective tissue growth factor (CTGF) expression in the brain is a downstream effector of insulin resistance- associated promotion of Alzheimer's disease beta-amyloid neuropathology.

The goal of this study was to further explore potential mechanisms through which diabetogenic dietary conditions that result in promotion of insulin resistance (IR), a feature of non-insulin dependant diabetes mellitus (type-2 diabetes), may influence Alzheimer's disease (AD). Using genome-wide array technology, we found that connective tissue growth factor (CTGF), a gene product described previously for its involvement in diabetic fibrosis, is elevated in brain tissue in an established mouse model of diet-induced IR. With this evidence we continued to explore the regulation of CTGF in postmortem AD brain tissue and found that CTGF expression correlated with the progression of AD clinical dementia and amyloid neuritic plaque (NP) neuropathology, but not neurofibrillary tangle (NFT) deposition. Consistent with this evidence, we also found that exposure of Tg2576 mice (a model AD-type amyloid neuropathology) to a diabetogenic diet that promotes IR results in a ~2-fold elevation in CTGF steady-state levels in the brain, coincident with a commensurate promotion of AD-type amyloid plaque burden. Finally, using in vitro cellular models of amyloid precursor protein (APP)-processing and Abeta generation/clearance, we confirmed that human recombinant (hr)CTGF may increase Abeta1-40 and Abeta1-42 peptide steady-state levels, possibly through a mechanism that involves gamma-secretase activation and decreased insulin-degrading enzyme (IDE) steady-state levels in a MAP kinase (MAPK)/ phosphatidylinositol 3-kinase (PI-3K)/protein kinase-B (AKT)1-dependent manner. The findings in this study tentatively suggest that increased CTGF expression in the brain might be a novel biological predicative factor of AD clinical progression and neuropathology in response to dietary regimens promoting IR conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app