JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Early life experience alters behavior during social defeat: focus on serotonergic systems.

Early life experience can have prolonged effects on neuroendocrine, autonomic, and behavioral responses to stress. The objective of this study was to investigate the effects of early life experience on behavior during social defeat, as well as on associated functional cellular responses in serotonergic and non-serotonergic neurons within the dorsal raphe nucleus, a structure which plays an important role in modulation of stress-related physiology and behavior. Male Long Evans rat pups were exposed to either normal animal facility rearing or 15 min or 180 min of maternal separation from postnatal days 2-14. As adults, these rats were exposed to a social defeat protocol. Differences in behavior were seen among the early life treatment groups during social defeat; rats exposed to 180 min of maternal separation from postnatal days 2-14 displayed more passive-submissive behaviors and less proactive coping behaviors. Analysis of the distribution of tryptophan hydroxylase and c-Fos-like immunoreactivity in control rats exposed to a novel cage and rats exposed to social defeat revealed that, independent of the early life experience, rats exposed to social defeat showed an increase in the number of c-Fos-like immunoreactive nuclei in serotonergic neurons in the middle and caudal parts of the dorsal dorsal raphe nucleus and caudal part of the ventral dorsal raphe nucleus, regions known to contain serotonergic neurons projecting to central autonomic and emotional motor control systems. This is the first study to show that the dorsomedial part of the mid-rostrocaudal dorsal raphe nucleus is engaged by a naturalistic stressor and supports the hypothesis that early life experience alters behavioral coping strategies during social conflict; furthermore, this study is consistent with the hypothesis that topographically organized subpopulations of serotonergic neurons principally within the mid-rostrocaudal and caudal part of the dorsal dorsal raphe nucleus modulate stress-related physiological and behavioral responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app