Add like
Add dislike
Add to saved papers

Microglial NADPH oxidase mediates leucine enkephalin dopaminergic neuroprotection.

Here, we report that leucine enkephalin (LE) is neuroprotective to dopaminergic (DA) neurons at femtomolar concentrations through anti-inflammatory properties. Mesencephalic neuron-glia cultures pretreated with femtomolar concentrations of LE (10(-15)-10(-13) M) protected DA neurons from lipopolysaccharide (LPS)-induced DA neurotoxicity, as determined by DA uptake assay and tyrosine hydroxylase (TH) immunocytochemistry (ICC). However, des-tyrosine leucine enkephalin (DTLE), an LE analogue that is missing the tyrosine residue required for binding to the kappa opioid receptor, was also neuroprotective (10(-15)-10(-13) M), as determined by DA uptake assay and TH ICC. Both LE and DTLE (10(-15)-10(-13) M) reduced LPS-induced superoxide production from microglia-enriched cultures. Further, both LE and DTLE (10(-14), 10(-13) M) reduced the LPS-induced tumor necrosis factor-alpha (TNFalpha) mRNA and TNFalpha protein from PHOX+/+ microglia, as determined by quantitative real-time RT-PCR and ELISA analysis in mesencephalic neuron-glia cultures, respectively. However, both peptides failed to inhibit TNFalpha expression in PHOX-/- cultures, which are unable to produce extracellular superoxide in response to LPS. Additionally, LE and DTLE (10(-14), 10(-13) M) failed to show any neuroprotection against LPS in PHOX-/- cultures. Together, these data indicate that LE and DTLE are neuroprotective at femtomolar concentrations through the inhibition of oxidative insult associated with microglial NADPH oxidase and the attenuation of the ROS-mediated amplification of TNFalpha gene expression in microglia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app