EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Correction of motion artifacts from cardiac cine magnetic resonance images.

Academic Radiology 2005 October
RATIONALE AND OBJECTIVES: An image registration method was developed to automatically correct motion artifacts, mostly from breathing, from cardiac cine magnetic resonance (MR) images.

MATERIALS AND METHODS: The location of each slice in an image stack was optimized by maximizing a similarity measure of the slice with another image slice stack. The optimization was performed iteratively and both image stacks were corrected simultaneously. Two procedures to optimize the similarity were tested: standard gradient optimization and stochastic optimization in which one slice is chosen randomly from the image stacks and its location is optimized. In this work, cine short- and long-axis images were used. In addition to visual inspection results from real data, the performance of the algorithm was evaluated quantitatively by simulating the movements in four real MR data sets. The mean error and standard deviation were defined for 50 simulated movements as each slice was randomly displaced. The error rate, defined as the percentage of non-satisfactory registration results, was evaluated. The paired t-test was used to evaluate the statistical difference between the tested optimization methods.

RESULTS: The algorithm developed was successfully applied to correct motion artifacts from real and simulated data. The results, where typical motion artifacts were simulated, indicated an error rate of about 3%. Subvoxel registration accuracy was also achieved. When different optimization methods were compared, the registration accuracy of the stochastic approach proved to be superior to the standard gradient technique (P < 10(-9)).

CONCLUSIONS: The novel method was capable of robustly and accurately correcting motion artifacts from cardiac cine MR images.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app